• Preuniversitarios
  • Álgebra
  • Aritmética
  • Cálculo
  • Contabilidad
  • Economía
  • Ecuaciones Diferenciales
  • Estadística
  • Finanzas
  • Física
  • Geometría
  • Ingeniería
  • Lógica
  • Matemáticas Financieras
  • Métodos Númericos
  • Química
  • Termodinámica
  • Trigonometría
Imagen Instructor

Variable Compleja para métodos matemáticos

USD $25
Acceso a todos los cursos por 30 Días
O
USD $30
¡Compra curso!
24 Estudiantes
Imagen Instructor
Descripción del curso
En este curso encontrarás el temario de variable compleja que habitualmente se requiere para aprobar el primer curso académico en los grados de cualquier ingeniería, física y matemáticas.
El curso intercala 70 vídeos de teoría con 83 vídeos de resolución de ejercicios paso a paso y 21 vídeos de apéndices. Gran parte de los ejercicios propuestos son de nivel similar y superior a los que puedes encontrar en cualquier examen de un grado oficial. Se incluye un pdf con todos los enunciados y respuestas para facilitar el repaso de los ejercicios.

El curso ofrece no sólo un punto de vista analítico de los conceptos, sino que lo complementa con uno geométrico. Con ello se adquiere una idea más sólida de los temas tratados. Éste es uno de sus puntos fuertes, ya que a día de hoy no es una información fácil de encontrar ni en libros de texto universitarios ni en internet

En las lecciones y ejercicios se explican no sólo los razonamientos correctos, sino también aquellos que los estudiantes suelen utilizar de forma errónea. En esta asignatura es habitual creer que se ha entendido algo cuando en verdad no es así. Hacer hincapié en los errores que se suelen cometer es una buena manera de chequear lo que se ha entendido.
Los contenidos se presentan en los siguientes bloques:

1- Números complejos. Operaciones elementales y propiedades: aquí veremos todas las maneras de escribir un número complejo. Aprenderemos a calcular módulos y argumentos. Estudiaremos la diferencia entre argumento y argumento principal y comenzaremos a realizar algunas operaciones sencillas. 
Demostraremos todos los pasos por sencillos que sean para ir adquiriendo soltura a la hora de expresar nuestro pensamiento de manera matemática. Para ello comenzaremos a introducir el punto de vista geométrico, que nos acompañará hasta el final del curso.
Aprenderemos a utilizar herramientas poderosas de esta asignatura que bien podremos usar en otras, como las aplicaciones de la fórmula de De Moivre.

2- Raíces enésimas. Ramas. Cortes de ramificación: introduciremos esta parte deduciendo una fórmula para el cálculo de las raíces enésimas de un número complejo. Atenderemos a la geometría de los resultados a partir de múltiples ejercicios.
Después comprenderemos qué es una función multivaluada y discutiremos las posibles maneras que hay para representar las funciones complejas, ya que éstas poseen 4 dimensiones y éso dificulta un poco su representación. 
Ello nos dará paso al estudio de los conceptos de corte de ramificación y rama, para los cuales tendremos que asimilar las ideas de continuidad  y límite en variable compleja.
Luego volverá a haber una buena cantidad de ejercicios. Ésta será una sección densa de la que aprender muchísimo. Aquí será la primera vez que encontremos ejercicios de un nivel más complicado al presentado en muchos exámenes, lo cual nos ayudará bastante para el día que nos examinemos.

3- Módulos, conjugados, desigualdades y regiones: la mayoría de los ejercicios de examen de regiones tienen que ver con comprender muy bien las propiedades de los módulos, conjugados y desigualdades triangulares, así que ésto será lo primero en lo que profundizaremos. Después de ello estaremos en condiciones de hablar de puntos interiores, exteriores, frontera, de acumulación, conjuntos abiertos, cerrados, ni cerrados ni abiertos o cerrados y abiertos simultáneamente, conjuntos conexos, acotados etc. Como siempre, habrá ejercicios. Podréis comprobar que los propuestos en este bloque son muy sencillos. Los ejercicios más complejos sobre regiones se encontrarán más adelante relacionados con las funciones exponenciales, logarítmicas y transformaciones de Möbius, ya que es como se suele evaluar el conocimiento sobre este tema en los exámenes.

4- La función exponencial compleja: esta sección empezará explicando conceptos que nos serán de mucha ayuda a partir de este punto. Hablaremos de qué es una función biyectiva, inyectiva, sobreyectiva y del problema de la reversibilidad en funciones no inyectivas. Después deduciremos una fórmula para la función exponencial y veremos su representación geométrica. 
Los ejercicios propuestos serán de nivel examen y superior. A partir de este momento las representaciones gráficas se convertirán en una de nuestras herramientas más preciadas. Veremos cómo un ejercicio que se muestra bastante complicado bajo un enfoque analítico puede convertirse en una pregunta relativamente fácil de contestar utilizando un punto de vista gráfico.

5- La función logaritmo complejo: este bloque será el más complejo. Los logaritmos integrarán todo lo referente a las ramas y al corte de ramificación estudiado ya en el bloque de las raíces y tendremos que recordad el problema de la reversibilidad en funciones no inyectivas. Deduciremos las fórmulas para la función rama principal del logaritmo "Log(z)" y para la función logaritmo multivaluada "log(z)". Veremos como expresar una determinada rama y la compararemos con la manera en que describíamos la rama de una raíz enésima. Entraremos en detalle en qué es el factor "n" del logaritmo multivaluado y finalmente hallaremos una fórmula para la función  " Valor Principal del logaritmo" expresada también como  "Log(z) ".
Los ejercicios propuestos tendrán nivel de examen y superior. Algunos de ellos serán particularmente completos.Para realizarlos necesitaremos aplicar todo lo que sabemos hasta este punto, pues habrá que graficar ramas de la función logaritmo multivaluado de una región inicial, que a su vez será alguna rama de una raíz enésima de alguna porción del plano complejo, así como calcular límites. De aquí aprenderemos mucho no sólo de logaritmos complejos, sino de cómo utilizar el lenguaje matemático para expresar ideas.

6- Transformaciones de Möbius y el infinito en variable compleja: esta sección supondrá una cierta bajada de intensidad respecto a la anterior pues su nivel de dificultad es, en comparación, bajo. 
Comenzaremos con un enfoque superficial de qué son las transformaciones de Möbius, con intención de aprender lo básico para poder enfrentarnos a ejercicios de examen. Luego entraremos más en detalle y miraremos a la transformación de Möbius como un conjunto de transformaciones más simples. Éso nos llevará a prestarle especial atención a la función inversa (1/z). Mediante ejercicios podremos comprobar su poder para transformar rectas en círculos etc. En este último punto participarán fuertemente nuestros conocimientos sobre las propiedades del módulo y del conjugado y los usaremos para realizar cálculos realmente curiosos.Después demostraremos por qué la restricción que caracteriza a toda transformación de Möbius ha de existir y ser como es. Por último, deduciremos una fórmula para construir la transformada inversa de Möbius.
Los ejercicios que se realizarán tras la teoría serán de nivel examen y superior. Aprenderemos a encontrar una región resultado de aplicar una transformación de Möbius a un conjunto inicial de números complejos. Si el enunciado nos ofrece la región producto de una transformación de Möbius, veremos cómo hallar la región inicial mediante caminos distintos de manera que uno de ellos se basará en la utilización de la transformada inversa de Möbius. También tendremos que construir una transformación de Möbius a la carta y mezclaremos logaritmos con transformaciones de Möbius. Durante todo este camino aprenderemos a interpretar el infinito en variable compleja. 

7- Más sobre límites, continuidad y cálculo diferencial. Cauchy-Riemann: aunque llegados a este punto ya sabremos qué es un límite en variable compleja,profundizaremos algo más al utilizarlo como herramienta clave para derivar funciones complejas. Relacionaremos continuidad y derivabilidad. Aprenderemos a calcular derivadas con diferentes herramientas. Primeramente usando la definición de límite y luego sin ella.
Los ejercicios propuestos son de nivel examen e inferior. Serán muy útiles para reforzar nuestros conocimientos sobre las propiedades del módulo y el conjugado y ver cómo aplicarlo para resolver límites en variable compleja

8- Funciones derivables, analíticas, holomorfas, armónicas y armónicas conjugadas: estudiaremos y veremos las diferencias entre las funciones mencionadas. Clasificaremos ejemplos en diferentes tipos de función.  Los ejercicios serán de nivel examen y superior. A través de ellos profundizaremos algo más en las ecuaciones de Cauchy-Riemann, encontrando una expresión en forma polar. Atenderemos a errores de entendimiento que los alumnos suelen cometer al estudiar el teorema que relaciona funciones armónicas conjugadas y derivabilidad. Aprenderemos a construir funciones analíticas según las condiciones de un enunciado etc.

9- Apéndices: aquí se encontrarán vídeos complementarios al curso y se podrán ver a gusto del estudiante.
 Se expondrá una demostración paso a paso de las ecuaciones de Cauchy-Riemann así como de las fórmulas para derivar sin utilizar la definición de límite. Lo mismo se hará para la fórmula de Euler etc
Luego habrá un conjunto de vídeos cuya temática suele estar fuera del temario exigido en un grado, ya que hablaremos de cómo apareció la unidad imaginaria. No obstante, a lo largo de esos vídeos se podrán aprender cosas muy interesantes que tal vez nunca se tocaron en el instituto. Así, aparte de interés histórico, se expondrán formas de enfocar las matemáticas a través de las batallas a las que los matemáticos de aquel momento se enfrentaron, lo cual sin duda es algo muy útil para cualquier asignatura de una carrera de ciencias.
Módulo 1
Introducción y PDF con enunciados y respuestas
Módulo 2
Números complejos. Operaciones elementales y propiedades
Lección 5
13:11
Lección 15
11:41
Módulo 3
Raíces enésimas. Ramas. Cortes de ramificación
Módulo 4
Módulos, conjugados, desigualdades y regiones
Lección 70
11:38
Lección 72
8:57
Lección 73
9:06
Lección 74
9:48
Módulo 5
La función Exponencial Compleja
Lección 84
4:30
Lección 85
5:40
Lección 86
2:49
Módulo 6
La función Logaritmo Complejo. Ramas y cortes de ramificación
Lección 98
8:52
Módulo 7
Transformaciones de Möbius y el infinito en variable compleja
Módulo 8
Más sobre límites, continuidad y cálculo diferencial. Cauchy-Riemann
Lección 140
10:09
Módulo 9
Funciones derivables, analíticas, holomorfas, armónicas y armónicas conjugadas
Módulo 10
Apéndices
Lección 158
12:34
Lección 159
15:15
Lección 164
14:21
Lección 165
15:56
Lección 166
10:02
Lección 167
11:31
Lección 168
14:01
Lección 169
14:13
Lección 170
17:04
Lección 171
19:22
Lección 172
18:04
Instructor
Juan
Juan Ballesteros Peña
Este curso lo hemos creado entre 2 personas:

Juan Ballesteros Peña: Licenciado en Ciencias Ambientales por la Universidad de Alcalá de Henares (Madrid. España) y estudiante del grado en Física a través de la Universidad Nacional a Distancia (UNED).

Marc Meléndez Schofield: Licenciado en Ciencias Físicas por la (UNED). Máster en Sistemas Complejos. Doctorado en sistemas complejos especializado en mecánica estadística fuera del equilibrio. Licenciado en Antropología social y cultural (UNED). Licenciado en Filosofía (Sussex University). Actualmente, investigador del "Department of theoretical condensed matter physics" de la Universidad Autónoma de Madrid (España).

Marc y yo (Juan) nos conocimos en la UNED. Él era tutor de la asignatura de métodos matemáticos I y yo alumno. Por aquel entonces yo acaba de volver de pasar una temporada por el amazonas y estaba loco por aprender ciertos aspectos de física para volver algún día a la selva a poner en práctica mis ideas. Cuando conocí a Marc en la UNED, resultó que él era experto en esos temas que yo quería aprender. Mientras estudiaba la carrera, tomaba lecciones con él sobre fractales, programación etc y poco a poco, con su ayuda, fuimos dando cuerpo a esas ideas que en un principio le comenté.

Paralelamente, fuimos compartiendo nuestra perspectiva sobre una asignatura con un éxito muy bajo de aprobados: la que trataba con la variable compleja. Habitualmente comentábamos maneras en las que se podría mejorar su aprendizaje.
Más tarde conseguí un trabajo en un colegio internacional en Thailandia como profesor de física y matemáticas y en mi tiempo libre hice algunos vídeos sobre la asignatura mencionada. El feedback no era malo y bastantes estudiantes encontraban la información presentada en esos vídeos como muy útil. Entonces le propuse a Marc hacer un curso en condiciones de esa asignatura. Yo podría grabarlos y trabajarlos y Marc podría aportar todos esos detalles y puntos de vista que sólo una persona con una formación tan fuerte como la suya es capaz de proporcionar.

Desde entonces han pasado otro par de años. Yo sigo estudiando física. Hemos creado este primer curso de variable compleja y yo vuelvo al Amazonas con todo lo que Marc ha ido programando.
Calificaciones

Calificación promedio

5.0
3 Reviews
Detalles
5 estrellas
3
4 estrellas
0
3 estrellas
0
2 estrellas
0
1 estrella
0

Rosi FV



:)
julio 17, 2018

Víctor Manuel Lara Acedo



Enhorabuena por el curso. Está genial. Imprescindible si estudias Métodos Matemáticos por la Uned
marzo 19, 2018

gonzalo figueroa



genial para la UNED
marzo 10, 2018


Más de Matemática y Ciencia


Toma el curso completo para que puedas acceder a todas sus lecciones
Haz clic en el botón naranja para adquirirlo
Waiting...
El demo del video ha terminado
Compra Variable Compleja para métodos matemáticos para aprender más.
Acceso sin límite de tiempo
Acceso en línea
Incluye certificado
Garantía de devolución en 7 días
USD $30
¡Compra ahora!