• Preuniversitarios
  • Álgebra
  • Aritmética
  • Cálculo
  • Contabilidad
  • Economía
  • Ecuaciones Diferenciales
  • Estadística
  • Finanzas
  • Física
  • Geometría
  • Ingeniería
  • Lógica
  • Matemáticas Financieras
  • Métodos Númericos
  • Química
  • Termodinámica
  • Trigonometría
Lección 43

Solución de una ecuación trigonométrica ejemplo 8

Regístrate para ver este video
Octavo ejemplo de como solucionar una ecuación trigonométrica. La ecuación coseno de x por uno menos tangente de x, menos seno de x por uno más cotangente de x, igual a uno En este caso convertimos toda la ecuación en términos de la función seno de x, la cual resulta muy simple ya que nos queda el seno de x solo. Dado que la calculadora solo nos da un resultado para el seno inverso entonces debemos usar el concepto de circunferencia unitaria para encontrar el otro ángulo cuyo seno es igual. En este video veremos la solución de un ejercicio propuesto de una ecuación trigonométrica. El ejercicio planteado es el siguiente: Para qué valores de equis entre 0 y 360° se cumple la siguiente ecuación: coseno de equis que multiplica a uno menos tangente de equis, menos seno de equis que multiplica a uno más cotangente de equis es igual a uno. Lo primero que debemos hacer es poner la ecuación trigonométrica en términos de una sola variable por lo que pondremos los términos tangente y secante en función del seno y del coseno. Como vemos, al hacer estos reemplazos la ecuación trigonométrica se simplifica y queda expresada de la siguiente manera: seno de equis es igual a menos un medio, esta ecuación no requiere que se exprese como una ecuación algebraica y vemos que la respuesta es que x es el seno inverso de menos un medio. En la calculadora podemos hallar la respuesta metiendo este valor y aplicando la tecla seno inverso, como vemos el seno inverso de menos un medio nos señala un ángulo de -30° grados o tomando una medida positiva adquiere el valor de 330° grados. Debemos tener en cuenta que estos no son los únicos ángulos para los que el seno adquiere estos valores, es por eso que debemos hacer uso de la circunferencia unitaria para hallar otros valores que cumpla con la ecuación.
Preguntale a otros estudiantes
Conectado como Usted no esta conectado.
Pregunta:
Detalles de la Pregunta:



Waiting...
Toma el curso completo para que puedas acceder a todas sus lecciones
Haz clic en el botón naranja para adquirirlo
El demo del video ha terminado
¿Deseas ver este video completo?
crea tu cuenta en TareasPlus
Regístrate!