• Preuniversitarios
  • Álgebra
  • Aritmética
  • Cálculo
  • Contabilidad
  • Economía
  • Ecuaciones Diferenciales
  • Estadística
  • Finanzas
  • Física
  • Geometría
  • Ingeniería
  • Lógica
  • Matemáticas Financieras
  • Métodos Númericos
  • Química
  • Termodinámica
  • Trigonometría
Lección 69

Integral de coseno a la n (fórmula de recurrencia)

Regístrate para ver este video
Ejemplos de uso y demostración de la fórmula general (o de recurrencia) para integrar coseno a la n sin importar si n es par o impar.

Se muestran dos ejemplos distintos mostrando la potencia de dicha fórmula para el caso en que n es impar primero y luego para el caso en que es par.

Luego de dichos ejemplos se procede a mostrar de donde proviene la fórmula para integrar coseno a la n.

Así como mostramos en un video anterior que existe una fórmula de recurrencia para resolver la integral de seno a la n de ax, vamos a mostrar que existe otra para la integral de coseno a la n de ax. Las ventajas que trae el uso de esta fórmula es que es aplicable en el caso de que n sea par o impar. Para comenzar se ejemplifica encontrando la integral de coseno a la cinco de x utilizando la fórmula de recurrencia. En el segundo ejemplo se halla mediante el uso de la fórmula de recurrencia la integral de coseno a la cuadro de 3x. Observemos que no tuvimos que realizar ninguna transformación para hallar las integrales, como lo teníamos que hacer en los casos que no utilizábamos la fórmula de recurrencia. Luego se muestra de dónde nace la fórmula de recurrencia para integrar coseno elevado a la n sin importar si n es par o impar.
Preguntale a otros estudiantes
Conectado como Usted no esta conectado.
Pregunta:
Detalles de la Pregunta:



Waiting...
Toma el curso completo para que puedas acceder a todas sus lecciones
Haz clic en el botón naranja para adquirirlo
El demo del video ha terminado
¿Deseas ver este video completo?
crea tu cuenta en TareasPlus
Regístrate!